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Floquet-Markovian description of the parametrically driven,
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Sigmund Kohler, Thomas Dittrich,and Peter Haggi
Institut fir Physik, Universitd Augsburg, Memminger Stgéa 6, D-86135 Augsburg, Germany
(Received 13 August 1996

Using the parametrically driven harmonic oscillator as a working example, we study two different Markov-
ian approaches to the quantum dynamics of a periodically driven system with dissipation. In the simpler
approach, the driving enters the master equation for the reduced density operator only in the Hamiltonian term.
An improved master equation is achieved by treating the entire driven system within the Floquet formalism and
coupling it to the reservoir as a whole. The different ensuing evolution equations are compared in various
representations, particularly as Fokker-Planck equations for the Wigner function. On all levels of approxima-
tion, these evolution equations retain the periodicity of the driving, so that their solutions have Floquet form
and represent eigenfunctions of a nonunitary propagator over a single period of the driving. We discuss
asymptotic states in the long-time limit as well as the conservative and the high-temperature limits. Numerical
results obtained within the different Markov approximations are compared with the exact path-integral solu-
tion. The application of the improved Floquet-Markov scheme becomes increasingly important when consid-
ering stronger driving and lower temperaturg81063-651X97)13101-4

PACS numbegps): 05.30—d, 42.50.Lc, 03.65.Sq

I. INTRODUCTION the Floquet formalism that allows one to treat time-periodic
forces of arbitrary strength and frequency. While the Floquet
The dynamics of microscopic systems in strong periodidormalism amounts essentially to using an optimal represen-
fields forms a problem of fundamental significance, with atation and is exacf4], the simplification brought about by
vast variety of applications in quantum optics, quantumthe Markovian description is achieved only at the expense of
chemistry, and mesoscopic systems. If the driving field is oftccuracy. Here, a subtle technical difficulty lies in the fact
a macroscopic nature, for example, a continuous-wave lasépat the truncation of the long-time memory introduced by
irradiation, it is appropriate to describe the complete systeri?® Path, and the inclusion of the driving, do not commute:
in a mixed quantum-classical way, ie., to give a full As pointed out in Ref[5], the result of the Markov approxi-

quantum-mechanical account of the central system and it§/ation depends on whether it is made with respect to the

energy loss to ambient degrees of freeddhe electromag- eigenenergy spectrum of the central systeithout the driv-

netic vacuum or weakly coupled internal degrees of freedd OF with respect to the quasienergy spectrum obtained

doms, but to include the field as a classical external drivingfrom the Floguet solution of the driven system. In the second

f A soluti fthe d ics th : 0 si Icase it cannot be treated as a system with proper eigenstates
orce. A solution of the dynamics then requirés one to simul-, , 4 eigenenergies. A Markovian approach based on a

taneously eliminate the ambient freedoms and to integratauasienergy spectrum has been implemented in recent work

the equations of motion with an explicit time dependence. Iy, §riven Rydberg atoms] and driven dissipative tunnel-
principle, this can be done exactly using path-integral techmg [7].

nigues. However, even a partially analytical solution within  "The purpose of the present paper is to investigate these
the path-integral approach is feasible only for the very simtwo Markovian approaches to damped periodically driven
plest systems in the class addressed, in particular, for perguantum dynamics, with their specific merits and drawbacks,
odically driven, damped harmonic oscillatof4], or for  for a linear system where an exact path-integral solution is
driven dissipative two-level systemi2]. As soon as nonlin- still available: The parametrically driven, damped harmonic
ear forces come into play, the path-integral approach requiresscillator allows for a very transparent and well-controlled
one to resort to extensive and sophisticated numerics, such asroduction of the different approximation schemes at hand.
Monte Carlo calculation§3], with their own shortcomings.  Their quality can here be reliably checked since, in this sys-
In most cases of interest, it is more adequate to make aem, the quasienergy spectrum is sufficiently different from
much use as possible of the methods and approximations thiéie unperturbed energy spectri8j (this feature is in con-
have been developed separately for the two problems menrast to the additively driven harmonic oscillator, where the
tioned above, quantum dissipation, on the one hand, and pelifference of two quasienergies does not depend on the driv-
riodic driving, on the other hand. Specifically, it is desirableing parameter§8]), and a comparison with the known quan-
to combine a Markovian approach to quantum dissipationtum path-integral solutiofl] is possible.
leading to a master equation for the density operator, with Moreover, by switching to a phase-space representation
such as the Wigner function, it is possible to elucidate the
relationship of the quantal results to the corresponding clas-
*Present address: Max-Planck-Institut Rhysik Komplexer Sys-  sical Liouville dynamics. Since this relation is particularly
teme, Bayreuther Str. 40, Haus 16, D-01187 Dresden, Germany. close in the case of linear systems, this provides an addi-
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tional consistency check. Therefore, the emphasis of this pa- 30
per is predominantly on the testing and thorough understand-

ing of the available methods. Their application to a strongly 25
nonlinear system where analytical path-integral solutions are
far beyond our present capabilities will be the subject of
forthcoming publications.

Forming a convenient “laboratory animal” due to its sim- = I
plicity and linearity, the parametrically driven harmonic os- 10
cillator still shows nontrivial behavior, interesting in its own ! , 4
right. We shall give a brief review of the model and its 5t ' : : ; -
classical dynamics in Sec. Il. The central results of the paper, L : : ' i
concerning the applicability and quality of the alternative 0 =y pr o s
Markov approximations, are presented in the course of the LN, , 3 ]
guantization of the system with dissipation, in Sec. Ill. Its s 5 10 15 20
last subsection is devoted to a discussion of the asymptotics c
of the quantal solutions, such as the conservative and the
high-temperature limits. Section IV contains numerical re- - ¢ Stability of Eq.(2) with y=0 for the case of a Mathieu
sults for a number of characteristic dynamical quantities A3scillator. In the white areas the Floguet indgxis real, which
obtained for the alternative Markovian approaches, and thggresponds to stable solutions. In the shaded aue@scomplex
comparison to the path-integral solution. A summary of théang therefore one of the fundamental solutiofisis unstable. On
various representations and levels of description addressed jfe borderlines. becomes a multiple of2/2.
the paper, with their interrelations, is given in Sec. V. A
number of technical issues are deferred to Appendix A. ReThe solution&,(t) is related tog;(t) by the time-inversion
sults for an additive time-dependent force in combinationsymmetry inherent in Eq(3). Being periodic in time, the
\cljv'ithBa parametric periodic driving are summarized in Appen-classical Floquet functiog(t) can be represented as a Fou-

X B. rier series

20

15

Wo

Il. THE MODEL AND ITS CLASSICAL DYNAMICS .
2 c eant (5)
For a particle with massn moving in a harmonic poten-

tial with time-dependent frequency, the Hamiltonian is g|ven.|_he Floguet indexs depends on the shape of the driving

by k(t) and is defined only mo€). There exist driving func-
2 4 tions for which u is complex so that one of the solutions
Hy(t)= ﬁ'ﬁ‘ Ek(t)xz, (1)  &(t) becomes unstabléef. Fig. 1). In stable regimeg: is

real. On the border between a stable and an unstable regime,

wherek(t) is a symmetric and periodic function with period # Pecomes a multiple of}/2 and the solutiong,(t) and
T. A special case is the Mathieu oscillator, where&2(t) are notlinearly independent. For givé(t), the &(t)

K(t) = m(wé+scosﬂt) with Q=27/T. Depending on its fre- still depend on the damping. We denote the limity—0 of

quency and amplitude, the driving can stabilize or destabiliz&h€ functionsg;(t) by £(1). ,

the undriven oscillation. Figure 1 shows the zones of stable "€ normalization of thec, is chosen such that the
and unstable motion, respectively, for the Mathieu oscillator Wronskian¥V, which is a constant of motion, is given by
in the w3-¢ plane. The equation of motion for a classical - . .

particle with velocity-proportionali.e., Ohmig dissipation W= &6 =~ &i(DE(H) =21, 6)

in the potential given in Eq(l) reads resulting in the sum rule

o0

. .1
%t yx+ —k(t)x=0. 2) D ‘cﬁ(ﬂ+nQ):1. (7)

By substitutingx=yexp(—+t/2), we can formally remove
the damping to get an undamped equation with a modifie

? Returning to the originak coordinate, we find that the
potential, u

ndamental solutions of Eq2) read
— a2 -

4+ [K(t)/m— 'y2/4]y=0. 3 fi(t)y=e " "(t), i=1,2. (8

Already here, on the level of the classical equations of mo- For constant frequency of the oscillator,

— 2 . . .
tion, we can apply the Floquet theorem for second-order difk(t) =Cconst=mwg, the Floguet index and the periodic func-
ferential equations with time-periodic coefficients. It assertdion becomeu=(wp—y“/4)™ and ¢(t) =(wo— y7/4)" ™%,

[9] that Eq.(3) has two solutions of the form respectively, which reproduces the results for a damped har-
_ monic oscillator without driving.
(D) =€eHp(t), &N)=&(—1), o(t+T)=0(1). The Green function for Eq2) is constructed using Egs.

(4) (5 and(6),
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G(t,t ) =e MUV £ (1) £,(t) — £x(1) E,(t)]/2, (99  System, subject to dissipatigdi2—14. In most cases, how-
ever, this equation cannot be solved exactly. In the limit of
weak coupling,

=e YN ¢ csifu(t—t')+Q(nt—n't’)].
n,n’

v<kgT/h, a7
(10)
. . . e <Az, 1
In terms of this function, the solution of E(R) with initial Y=g (18)
conditionsx(to) =X and p(to) = po reads it is possible to truncate the time-dependent perturbation ex-
JG(tt pansion in the system-bath interaction after the second-order
X(t,tg)= _XOM+ @G(t,to). (11  term. The quantityy denotes the effective damping of the
dtg m dissipative system, anti, ; are the transition frequencies of

the central systerfsee, e.g., Eq(56), below]. The autocor-
relations of the bath decay on a time scal&gT, and thus in
this limit instantaneously on the time scaley Iof the system
correlations.

With the initial preparation(16), the equation of motion
lIl. THE DISSIPATIVE QUANTUM SYSTEM for the reduced density matrix in this approximation is given

To achieve a microscopic model of dissipation, we coupleby [12-14
the systen{l) bilinearly to a bath of noninteracting harmonic

Since the potential breaks continuous time-translational in
variance, this solution depends explicitly on the initial time
to.

: . . o A i ~
oscﬂla@ors[lo]. The total Hamiltonian of system and bath is  p(t)=— g[Hs(t),Ps(t)]— gth[HSB:Ps(t)]
then given by
~ ~ ~ ~ 1 0 " -
H(t):HS(t)+HSB+ HB, (12) _ﬁfo dTtrB[HSB![HSB(t_T!t)!pB,eq®pS(t)]]'
where (19
A2 . - . . .
|:|B: E (ZFI:: n %wﬁf(,z, (13) The tilde denotes the interaction picture defined by
v=1 v —_~ ~
O(t,t")=U{(t,t")OU(t,t"), (20)
is the Hamiltonian oN oscillators with masseas,,, frequen-
ciesw,, momentap,, and coordinateg, . The bath inter- N I
acts with the system via Uo(tt )—Tex;{ B %ﬁ,dt [Hs(t)+Hgl ], (22)
N N 2 . . . .
~ A A A 9, where7 is Wick’s time-ordering operator.
__ 2 ~ N
Hse X,,Zl 9%, X ;1 2m, >’ (14) For Hg and Hgg as in Egs.(13) and (14), we find the

master equation
which couples the system to each bath oscillatowith a
strengthg,. The second term in Eq14) serves to cancel a . L
shift of the potential minimum due to the couplifg0,11. ps(D) == 7 [Hs(D).ps(1)]
The bath is fully characterized by the spectral density of the
coupling energy,

1 -
- ﬁ;l glzljo dT{SV(T)[s\(v[F)Z(t_ Tat)1pS(t)]]

N 2
g,
)=m 2 5o o e w.). (19 FIA (DX 7,0),p5(0]. T (22
We choose an initial condition of the Feynman-VernonWith [A,B].=AB+BA and
type, i.e., att=t, the bath is in thermal equilibrium and A Ao
uncorrelated to the system, i.e., = c i
Yy S,(t) M. ot)—( 2I(B_I_)cosmyt, (23
p(to) =ps(to) ® pg,eqs (16)
where pg o= exp(—Hg/ke T)/trzexp(~Hg/ksT) is the ca- A()=— ZmeVSin“’vt* (24)

nonical ensemble of the bath akdT Boltzmann’s constant
times temperature. the symmetrically ordered and antisymmetrically ordered, re-
spectively, correlation functions of the bath oscillator

A. Interaction picture and perturbation theory
B. Markov approximation with respect

Due to the bilinearity of the system-bath coupling, one
y Y Piing to the unperturbed spectrum

can always eliminate the bath variables to get an exact,
closed integro-differential equation for the reduced density So far, we have followed the standard approach to dissi-
matrix ps=trgp, which describes the dynamics of the centralpative quantum dynamics in the weak coupling liffie—
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14. In the following subsections, we shall contrast a simpler The evaluation of the cross-diffusidd,, is more com-
Markov approximation based on the unperturbed spectrunplex. Because we did not find it in the literature, we give the
with a more sophisticated approach that accounts for theutline of its derivation. The logarithmic divergence Df,

modification of the spectrum due to the driving. is regularized by the Drude cutoff to obtain
1. Master equation % % ® iop
. . . D,,=— 5P| dwcot > —,
In the following, we restrict ourselves to an Ohmic bath, P 27 J_« 2KgT ) w*— w§ w+iwp

30
l(w)=Myw, (25 30

fixing the relation between the macroscopic damping Conyvher_e P denotes Cauchy_’s princi.pal part. The integral in Eq.
stanty and the microscopic coupling constagtsintroduced (30) is sglved by contour integration in the upper _half plane.
in Eq. (14). By imposing a Drude cutoff (@) — I ()/(1 Expressing the resulting sums by the psi function
+ w? wd) with wp>wg,Q, divergent integrals are avoided. #0) =dinI'(6)/dx [21] and neglecting terms of the order

S ) lwp, we obtain
In the crudest approximation, the time dependence of the ©' “P

system Hamiltonian is neglected in the derivation of the mas-

ter equation, i.e., the incoherent terms in the master equation D
are calculated replacingig(t) by HS=(1fr)f$dt Hg(1),

i.e., the Hamiltonian with zero driving amplitude. The posi-

tion operator in the interaction picture is then given by whereC is the Euler constant. _
Interestingly enoughmyD,, coincides with the Drude

_ . P regularized divergent part of the stationary momentum vari-
X(4,t") =xcoswg(t—t") + ——sinwo(t—t").  (26)  ance of a dissipative harmonic oscillaf@2].
0 It must be stressed that the dissipative terms in the master
Since the information on the phase of the driving is lost, itequation(27) areindependent of the drivingrhis manifestly
depends only on the differente-t’ of its arguments. reflects that the time dependenceb(t) has not been taken
Inserting this operator and the correlation functigg®  into account in the incoherent terms of the master equation.

and(24) into Eq. (22) leads to the master equation

wp
2 ’7TkBT

h

|y 1+ +C

, (31)

xp~—

2. Wigner representation and Fokker-Planck equation

In order to achieve a description close to the classical
phase-space dynamics, we discuss the time evolution of the
density operator in the Wigner representation. It is defined

+ 2D IX [P.ps]] (@n  by[23

ps=— 1 [Fs(t).ps]— 527X [P.psl 1- 72 Doyl [%.ps]]

The right-hand side of this equation depends on time only  W(x,p,t)= if dx’ e2PX 1 (x—x'| pg(t)|x+X').
through its first, the Hamiltonian, term and therefore retains mh ) o
the periodicity of the system Hamiltonidtg(t).

This form of the master equation does not produce a posi- ' . .
tive semidefinite diffusion matrix. It consequently does notThe moments of Fhe Wigner function are the symmetrically-
exhibit Lindblad form[13,15—-17. The positivity of ps is  °rdered expectation values of the density operator.
thus not guaranteed for all elements of the function space of Apply_lng this transformat_lon to the _master equatiaa),
density operators. The Markovian approximation implies thatV€ ©Ptain ac-number equation of motion,
guantum effects on a length scite\ yg=%/y4mkgT (non-

Markov effecty cannot be described self-consisterfty7— GHW(X,p,t) =L(HW(X,p,1), (33
19]. Note also that within a Markov approximation, the mas- . )

ter equation is periodic with the driving pericgB=2x/Q  With the differential operator

(Floquet form. This is in contrast to the non-Markovian ex-
act master equatiofi]. In this latter case, the effective mas- 1 5

ter equation has the structure of E(R7) with time- L(t)= = 1 Pdxt ¥dpp+K(1)Xdp+ YD ppdp+ YD xpdxdp -
dependent coefficient®,, and Dy, that depend also in a (34
nonperiodic way on the time elapsed since the preparation at

to. In Wigner representation, this corresponds to a timeEquation(34) has the structure of an effective Fokker-Planck

(32

dependent diffusion coefficiertsee below. operator. However, foD,,#0, the diffusion matrix is not
The coefficientsy and D, can be evaluated straightfor- positive semidefinite; correspondingly E¢33) has no
wardly [20] to give equivalent Langevin representation.
_ As is the case for the master equation from which it has
Y= (28)  peen derived, the coefficients of the Fokker-Planck operator

L " retain the periodicity of the driving, so that E(3) has
_T o solutions of Floquet form. This fact will be exploited in the
Dop 2 mfi wocot EkBT' (29 following subsection to construct the solutions.
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3. Wigner-Floquet solutions and
The Fokker-Planck equation for the density operator in (= yi2igt
the Wigner representation, E@3) with Eq. (34), offers the Qi+ (t+T)=e Q1+(1), (43
opportunity to make full use of the well-known and intuitive .
results for the corresponding classical stochastic system. In Q. (t+T)=el"727ImtQ, (1). (44)

particular, a solution of the Fokker-Planck equation can be

obtained directly by solving the equivalent Langevin equa-Taking the commutation relatio@2) into account, the func-
tion [24,25, or by using the formula for the conditional tions

probability of a Gauss procefg25]. In the present case, how-

ever, the fact that the diffusion matrix of E34) is not Wer (. 0.0 = 0" (O (YW X.D.t
positive semidefinite requires one to take a different route. (P = Q1 (D1 Q2 (1) WoolX,p.b),
Si Eqg.(33) with Eq. (34 t diff tial
ince Eq.(33) wi g. (34) represents a differentia =012, ... (45

equation with time-periodic coefficients, it complies with the
conditions of the Floguet theorem. Consequently, there exists

a complete set of solutions of the form

Waf(xi p!t) = e’uatua(xi plt)y ua(xyplt) = ua(xi p!t+ T)!

(39

henceforth referred to a&/igner-Floquet functions

We construct a solution for Eq33) of this form with
moo=0 by the method of characteristi€86], cf. Appendix
A. In the limit t;— —o0, the terms in the first line of Eq.
(A18), which contain the initial condition, vanish and we
obtain the asymptotic solution

Txx(t)
pr(t)

< ox(t)
pr(t)

pr(t)
pp(t)

)()

2yD t
— f _dr[et))?

Wod(X,p,t) =

27
oyp(t
(36)
Tpp(t)

with the variances

oyl(t) = (37)

2yD t d
op(t) = mppji dt'G(tt)_G(tt), (39

t J 2
Upp(t)=—mnyp+2'prpf_ocdt [EG(t,t )} .
(39

Note that in Eqs(37)—(39) the difference in usin®,, and

D=Dp,+ vDy, [see Eq(Al4) in Appendix A] is meaning-
less, since it is a correction of order. By inserting for

G(t,t") the Fourier representatiofi0), one finds that the
variances are asymptotically time-periodic.

Starting fromW,y, we construct further Wigner-Floquet
functions: By solving the characteristic equatiasge Ap-
pendix A), we find the two time-dependent differential op-
erators

Q1+ (D) =F1(V)dy+mfy(t)3,, (40)
Qa+ (1) =F (1) dy+mTy(1)dp. (41)

They have the properties
[L(t)—3,Q1+(1)]=[L(1)—3,Qu: ()]=0 (42

also solve Eq(33).

Due to Egs.(43) and (44), they are of Floquet structure

with the Floquet spectrum

Mean =N(=y2+ip)+n' (= yl2=in). (46)
This spectrum is independent of the diffusion constants, as
expected for an operator of tyg84) [27], and therefore is
the same as in the case of a classical parametrically driven
Brownian oscillatof 28].

The expression for the eigenfunctions in the high-
temperature limit of thgundriven classical Brownian har-
monic oscillator in Refg.27,29 is also of the structur&5).

We can recover this solution by inserting the classical diffu-
sion constantmkgT and the undriven limite—0 for the
classical solution, given in Sec. .

C. Markov approximation with respect
to the quasienergy spectrum

The master equatiofR7) can be improved by including
the time-dependent term in the system Hamiltonjanbe-
fore a Markov approximation is introduced, to account for
the change in the quasienergy spectrum due to the driving.

1. Floquet theory and quasienergy spectrum

For a Schrdinger equation with a time-periodic system
Hamiltonian such as Edq1), the Floquet theoren¥] asserts
that there exists a complete set of solutions of the form

)

The quasienergy, plays the role of a phase and therefore is
only defined mod}, cf. Ref.[4]. We shall use the basis
{|#,(t))} as an optimal representation to decompose states
and operators.

For the parametrically driven harmonic oscillatdy, the
Floquet solutions for the Schilinger equation are derived in
the literature in various wayl80—33. We skip the deriva-
tion and merely present the result,

[P (D)= Hed|p (1)), [da(t+T))=]du(1). (47)

0o /m/’ﬂ'ﬁ )1/2( gg(t))alz
VD= ey | &
X H oM €3(1) £3(1) )expli £2(1)x212€3(1)),
(48)
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for the Floquet solutions in the stable regime, whelrg is 2. Improved master equation

the ath Hermite polynomial,e=0,1,2, ... . The Floquet
index for this solution isu,= u(a+1/2). This gives the
guasienergy spectrum

We start anew from the full master equation in the weak-
coupling limit,

. (A 1 (=
o= (at+1Up'+KkQ, k=01,+2,.... (49 - %_[Hs(t),pﬁ _hf doo 1(0)Ng (o)
T — o
Note that Eq.(48) is a solution only in the stable regime. .
Consequently is real, cf. Sec. Il. XJ dr eTX(t— 7,t)p,X]+H.c. (60)
In analogy to the annihilation and creation operators for 0 o

the undriven harmonic oscillator, one can define operators
I" andI"" which act as shift operators for the Floquet statesHere, H.c. denotes the Hermitian conjugate of the dissipative

ie., part and
L) (D)= Va |iho-1(1), (50 Ny(@)=(e"*sT—1)"1= —n (—w)-1 (61
TTO[Pa(D)=Vat1 [ (D). (51 gives the thermal occupation of the bath oscillator with fre-
- quencyw. To achieve a more compact notation, we have
For a parametrically driven harmonic oscillatbi(t) can be  required that (— w) = —(w), which for an Ohmic bath, cf.
expressed in terms of position and momentum operator agq. (25), is just the analytic continuation.
[31,32 The fact that the Floquet statég,(t)) of the undamped

central system, Eq47), solve the Schidinger equation, al-
A 1/, [2m., . 2 lows for a substantial formal simplification of the master
F(I)ZE X 751(t)—p ﬁfl(t) : (52 equation: With the density operator being represented in this
basis,
The relations(50) and (51) can be proven by inserting the
Floquet solutiong48) and using the recursion relations for Pap(D)=(Pa(D]p(D)] (1)), (62)
Hermite polynomialg21].
The matrix elemenkX,4(t) of the position operatox with
the stategy,(t)), which we shall need later, reads

Xop(t) =€t kel (1) |X] Pp(t)) (53 b“":%fm do I(w)nth(w)J'wdT eler
—o0 0

the master equation takes the form

= iAaﬁkt
Ek e'tastX gy, (54) X 2 {X g (t= 1) parpr X 50 (1)
ll,B,

17 . _Xzya(t)xar !(t_T)p ’ }+HC (63)
Xap=1 fo dt e (DXl de(t), (55 ’ oy
Inserting Eqgs.(55 and (59) and using the identity
with the transition frequencies [od7 €“"=78(w)+ P(i/w), we arrive at the explicit equa-
tion of motion
Aaﬁk:lu’a_,uﬁ+ kQ. (56)
1

72 2 {1 )N D pric)

a’B’ KKk’

For Egs.(54) and(55), the periodicity of the Floquet states ,bag:
|#4(t)) has been used. The Fourier componexfgy are

preferably evaluated in the spatial representation, X @S0k Baa X, X npgr st 1 (A gard)

* i(Aaa'k=Bpa k)t o o X%
Xop()= f X (DX D) (57 XA i) € e KRN X warkbar K}
+H.c. . (64)

= A\ /i[ \/Eéfg(t)% g1t \/Eg(f(t)% g1l (58) The quasienergies of the undamped central system appear in
2m ' ' Eq. (64) by way of theA 4. Since these frequencies con-

tain only differences of quasienergies, they have a direct

physical significance as transition frequencies and so may be

used as arguments 6fw) andny,(w). This is not the case

for the quasienergies themselves, due to their Brillouin-zone-

| h like ambiguity, cf. Eq(49). Shifts of theA , 4, brought about
_ , cf. Eq(49). «pk broug
Xapk 2m(\/E C-ida -1\ OB pir). (59 by the principal parts of the integrals have been neglected.

by inserting the Fourier expansigb) for g?(t), to give
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3. Rotating-wave approximation and solution is the Wigner function corresponding t@,(t)) [33], with
in the Floquet representation the Laguerre polynomidl ,. Using the sum rul¢21]

In a rotating-wave approximatio(RWA), it is assumed o
that phase factors ejpA,g—Aypk)tl, with (a,B8,K) z KL (X)=(1— K)lex% X_K) (72)
#(a',B' k') in Eq. (64) oscillate faster than all other time a=0 “ k=1
dependences and hence can be neglected. This argument ap- ) ) o )
plies, however, only to quasienergy spectra without system&e obtain the asymptotic solution in the Wigner representa-
atic degeneracies or quasidegeneracies. Indeed, the harmoHR" @s
potential we are presently dealing with has the peculiarity of 1
equidistant(quasjenergy levels, cf. Eq(49), so that addi- W,od X,p,t)= = 7N+ (73
tional terms have to be kept. Here, the condition m(2N+1)
(a=B.K)=(a'—p',K'") is sufficient to ensureA g
=A . - Therefore these terms have to be kept in RWA.
Making the RWA, substituting Eq59) in Eq. (64), and A
assuming an Ohmic bath as above, we obtain the time- crxx(t)=E(N+l/2)§8(t)§g(t), (74
independent master equation

It is a Gaussian with the variances

. oxp(D=A(N+ L[ (1) EA(t) + £2(1) EX1) 112, (75)
pas= AN+ D2\ at DB+ Dpsrger—(atB)pog] i e
opp(t) =AmM(N+1/2) (1) E)(t). (76)

+N[2VaBp,_15-1—(a+B+2)p,zl} 65 . . .
[ Bpa1p-1=(at BH2)pagl) (69 To enable a comparison between the different equations

The effective thermal-bath occupation number of motions for the dissipative quantum system, we give for
the master equation in RWAB5) also the corresponding

partial differential equation in Wigner representation. For a

sz (O (1P + k)N w0+ kQ) (66) derivation, we use the propertiés0) and(51) of the opera-
torsT andTI'", to get from the master equati@f5) for the
reduces tdN=ny(wo) in the undriven limit. density matrix elementyp,; the corresponding operator

Formally, this master equation coincides with that for the€quation
undriven dissipative harmonic oscillator in rotating-wave ap-

- : . , i~ A Al An an
proximation[14]. It has the stationary solution p=— %[Hs(t),p]'f' %{(N+ 1)(2Tpl =TT p—pI''T)
as 1 N | ror—1rt rrt
paﬁ=m N1 5015' (67) +N(2IMpI'=TT p—pI'T")}. (77

) . L The dissipative part of this equation is the same as for the

The density operator of the asymptotic solution is diago,nqriven dissipative harmonic oscillatgt4], but with the
nal in this representation and reads shift operators for Floquet states instead of the usual creation
and annihilation operators. Interestingly, the master equation
in Eqg. (77) now exhibits Lindblad fornj13,15.

By substituting Eq.(52), we get an operator equation
which only consists of position and momentum operators.

The basig|#,(t))} corresponds to the “generalized Flo- Transforming them into the Wigner representation, we find
quet states” introduced in Reff5], i.e., they are centered on
the classical asymptotic solution and diagonalize the asymp-
totic density operator.

To get the variances of E¢68), we switch to the Wigner

pas(t>=go P2 | (D)ol D)]. (68)

1 4
L(t)=— ap&er E(axx+ dpP) +K(t)xdy

representation, + %[Dxx(t)aiJr Dyp(1)dydp+ Dpp(1)2]  (78)
W,d X,p,t)= ZO P2 W, (X,p,t), (69)  with the coefficients
D) =7 £(1) E3(1) (N+1/2)/m, (79
where
(—1) Dyp(t) =ALEL(D E(1) + £ E(DIN+1/2),  (80)
We(X,p,t) = e 7L (22), (70)

Dpp(t) =mAE3(H) € (N+1/2). (81)

1 . . . . The fact that there are also dissipative terms in &8)
2_ 0 0 2 0 0 0 0
27={m&(D &(HX - [£1(H &(1) + £1(D £5(1) Ipx containing derivatives with respect fois a consequence of
O 0 o the RWA: Its effect is equivalent to using instead of Ety)
+&1(D) &(H)pmy (71 the coupling HamiltoniaHRYA== g,(ab’+a'b,), where
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a andb, are the usual annihilation operators of the system 1 > 10+ nQ)
and the bath, respectively. This introduces an additional cou- Dpngmﬁ E [cg(M0+ nQ)]ZcothT.
pling term «<pp, . In the next subsection we show how to n=-= B
avoid this RWA, by going back to the original Markov ap-
proximation, Eq.(22).

(88)

Unlike the corresponding expression in the Sec. 1l B 1, Eq.
(28), the diffusion D,, now accounts explicitly for the
quasienergies (u°+n{) instead of the energ§ wy. Thus

In the present case of a bilinear system, driven or not, fothe quasispectrum approach is reflected solely by a driving-
which the classical motion is integrable, the knowledge ofinduced modification of the momentum diffusiar,,.
the classical dynamics opens a more direct access also to the The Fokker-Planck equation fa(x,p,t) is now of the
quantal time evolution. Specifically, the interaction-picturesame structure as in the case of the Markov approximation
position operatoix(t,t’) for the corresponding undamped with respect to the unperturbed spectrum. Therefore the so-
guantum system is given by the solution of the classicalution and the Floguet-Wigner functions remain the same, up
equation of motion in the limity—0, indicated by the su- to a different momentum diffusioD ,, .
perscript®. In our case the classical solution is given by Eq.  In contrast to the Fokker-Planck equation with RWA in
(11). The corresponding interaction-picture position operatotthe preceding subsection, the terms wigl and 2 are now

4. Fokker-Planck equation without rotating-wave approximation

reads absent. In addition, the cross diffusid,, in Eq. (85) is
O or . completely different, and unrelated to the one in the RWA
X(t t,):_;(‘?G (t,t") i EGO(t t) (82 case(80). It originates from a principal part that has been
’ at’ m e neglected in the derivation of E78).

Inserting it into Eq.(22), we obtain a master equation in the
Markov approximation with respect to the quasienergy spec- o
trum without expanding into Floquet states of the Sehro 1. The conservative limit

dinger equation. Even with the rotating-wave approximation |n contrast to the Markov approximation with RWA in
avoided, the resulting equation already has a simple strugsec, ||| C 3, the variances in both Markov approximations

ture: Itis of the same form as the master equation derived ijthout RWA still depend on the frictiory. To obtain the
Sec. I B 1, but with time-dependent transport coefficients ¢onservative limity—0 of these, we insert the Green func-

tion (10) into Eq. (37) and get

D. Asymptotics

WI)ZZ)IJ:dw a)f:dr sinw7)Go%t—r7t), (83

~ prpE ( , eyt—i[2,u+(n+n')ﬂ]t
i . 7ol == oz & G| iV 5 )
Dpp()=— 7f0 do wCOt"(m) L dr cogw7) . ent-i(n-n")0t
2G (et —2f4(1) Z(t)y—i(n——n’)ﬂ
X . (84) , etHil2ut (n+n’)Q]t
ey y+i[2,u+(n+n’)(2])' ®9

h (= ho o
Dxp(t)=;f do wCOU‘(m)I d7 cogw7)G (t—7t).  |n the limit of low damping,y<w+nQ for any integem,
0 B 0 85) only the casen=n’ of the second term in the brackets re-
mains. Note that this condition is violated in parameter re-
To evaluate these expressions, we substitute the undamp@@ns where the Floquet index becomes a multipl@o&s is
limit of Eq. (10), the case along the borderlines of the regions of stability in
parameter spacef. Fig. 1).

0.0 s For the position variance, we get
Got,t")= 2, clensinul(t—t')+Q(nt—n't")], (86)
nn’

D
| _ | T =AZ EDE), (90)
and exploit the sum rul¢7) for the c,, to find, as in Sec.
mnB1,
where
y()=y. (87) »
The explicit time dependence iB(t,t’) results in a time A n;m (Cn) (92)

dependence of the coefficierids,, andD,,. Averaging the
transport coefficients over a period of driving, we find for denotes a number of order unity.
Dyp with the sum rule(7) again the expressio(81), as in In an analogous way, we find
Sec. llI B 1. Here, we have to choose the cuteff much
larger than the relevant frequencig8+n(Q.

D,, - )
_A_PPr0 0 0 0
For D, we find in an average over a period of driving Txp()=A 2m [£2(0&(0)+ (D], (92)
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Tpp(t)=ADp, E1(DE(H). (93 S A
_ _ - kT /mQ=0.5
Besides the prefactor, these variances are the same as forthe 5| Pl
master equation with RWA in Sec. Il C 4. : e ]

Moreover, in this limit y—0, all diagonal elements 4 e .

W, (x,p,t) are Floquet functions with the quasienergies : /’ ]
Man=0. However, they are different from the Wigner repre- Q& 3 ,.~---'i'::/ .
sentation of the stationary solutiofig3) of the correspond- r e ]
ing Schralinger equation, which are of course solutions of b 7 ]
Eqg. (33) with y=0. Due to the degeneracy of the Floquet i ' ]
indices, this is no contradiction. The/,,(x,p,t) can be 4 ]
viewed as dissipation-adapted Floquet functions. ;

For consistency, we check the uncertainty relations for the oL e
asymptotic solution. It is satisfied if the variances fulfill the 0 10 30
inequality

axx(t)  oxp(t) _ ( DppA)2>ﬁ2/4 (94) FIG. 2. The diffusion constarl,,,, for the simple(dotted and
axp(t)  opp(t) m - ' the improveddashed Markov approximation compared to the time

average of the exact value in units of the classical diffusion constant
which we have verified numerically for the case of themksT for kyT=0.5. The parameters3 ande are indicated by
Mathieu oscillator. the full line in the insefunits as in Fig. L

2. The high-temperature limit This is an experimentally important case in view of the fact

In the limit of high temperaturekgT>%wp,, we expect that it describes the Paul trap4]. .
the Fokker-Planck equation for the Wigner function to give BY inserting Eq.(97) and the ansatg) into Eqg. (3), we
the Kramers equation for the classical Brownian mofig], ~ °btain the tridiagonal recurrence relation
i.e., an equation of the forit83) with the diffusion constants - 5
Dyp=0 andD,,=mkgT. eCq1+2[wo— y/4—(u+nQ)Jc,+ecy1=0. (99
In the standard approadi®ec. Il B) and the quasispec-
trum approach without RWA(Sec. 1l C 4, the Fokker- From this equation, the classical Floquet indexand the
Planck equation is already of the required structure. WithFourier coefficientx, are determined numerically by con-
#(1)=C [21] the cross diffusiorD,,, vanishes in the high- tinued fractiond24]. o
temperature limit. FoD,,, we use cotk=1/x+O(x) and _ In the figures we use the scaled quantitiesQt/2,
get wy=2wp/, ands=2¢/Q2. The external period thus takes
the value T=. Position and momentum are scaled via
x=(2h/mQ)Y? and p=(miQ/2)%p, respectively. The
overbar for the scaled quantities has been suppressed in the
figures.
With the sum rule(7), this reduces t@® ,,=mKkgT. The influence of the quasienergies on the equation of mo-
In the quasispectrum approach with RWA in Sec. Il C 3,tion (33) is given by different diffusion coefficientS 5. In
the variances and diffusion constants scale With1/2. This  Fig. 2, we compare the momentum-diffusion coefficients be-

Dpp=mksT> (c))*(1°+nQ). (95)

factor reads, in the high-temperature limit, tween the Markov approximation with respect to the unper-
turbed spectrum, given by E(9), and the Markov approxi-
1 oo KeT ksT mation that relates to the quasienergy spectrum, given by Eg.
N+ 522 (Cn) T:AT' (96) (88). We have scaled the values to the classical momentum-

diffusion coefficientmkgT. The parameter&»é and ¢ are
Therefore the diffusion constani,, and D, remain finite varied along the full line in the inset. Note that within the
and the Fokker-Planck operatt#8) does not approach the unstable regimes, perturbation theory is not valid. Neverthe-
Kramers limit for high temperatures. Nevertheless the asless, EQ(88) gives a smooth interpolation. The discrepancies
ymptotic variances in RWA coincide for high temperaturesbecome most significant for strong driving and largfe For

with the classical result in the limi—0. both low driving amplitudes<w§ and high temperature
T>hwy/Kg, the difference vanishes.
IV. NUMERICAL RESULTS The variancesr,(t) andop,(t) of the Markov approxi-

mations without RWA are compared against the exact results
In this section, we compare our approximate results 191] in Figs. 3a) and 3b). The chosen driving parameters
exact ones, obtained from the path-integral solution in Ref,)2=6.502 and =702 lie inside the fifth stable zone
[1]. Specifically, we give the numerical results for the (,,=4.53513)/2). The temperaturésT=0.5:0Q is suffi-
Mathieu oscillator, i.e., we use ciently large, but with quantum effects still appreciable. We
note that the improved Markov treatment in Sec. Ill C 4,
k(t)=m(w§+scodt). (970 which accounts for the quasienergy differences, agrees better
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nxx

1.2

1.1+ 1

10 L | L 1 N 1 L 1 N
50 51 52 53 54 55

30 T T T T T T T T T
L (b) . FIG. 4. Relative errom,(t) = o3™*(t)/23(t) for the posi-
Py tion variances of Fig. @).

V. CONCLUSION

We have used the parametrically driven harmonic oscilla-
tor as a simple working example to compare various versions
of the Markovian approach to the quantum dynamics of pe-
riodically driven systems with dissipation, and to provide a
synopsis of a number of alternative representations, each of
which emphasizes different aspects of the same underlying
physics.

The principal distinction to be made among possible Mar-
kovian approaches to the driven dissipative dynamics refers
to the degree to which changes in dynamical and spectral
properties of the central system due to the driving are taken

periodT=2=/() for the simple(dotted and the improveddashed ?nto account. In the_ crudest treatm(_ant, the nonunita_ry_ te_rms
Markov approximation, compared to the exact regiull line) for in the master equation are qenved ignoring Fhe explicit time
the parameters =7 02, w2=6.502, kyT=0.54, and y=2/20. erende.nce of the Hamﬂtoman, and the dnvmg a.ppears.only
The scaled driving periodf = is indicated in panela). in the unitary term. An |mproved_ r_naster equation is obtained

if the central system and the driving are coupled to the heat

bath as one whole. The energy-domain quantity relevant for
with the exact prediction. In the figure we depict asymptotica|| subsequent developments is then the quasienergy spec-
times t>50, where transient effects have already decayedyum, obtained within the Floquet formalism, instead of the
The asymptotic covariance elements retain the periodicity

T= of the external driving. For the chosen parameters the

FIG. 3. The asymptotic variances,(t) (a) ando,(t) (b) with

relative error is reduced by the use of the improved Markov 08 ' ' ' ' '
scheme by approximately 30%.
The relative erroryy,(t)=or2™*Y(t)/c224t) of the po- o6k e :

sition variance for these two Markov approximations is de-

picted in Fig. 4. Note that the maximal deviations do not

occur in the extrema, but happen to occur in the regions with | 5 o4l |
b o

negative slope.
As depicted in Fig. 5, the quality of both Markov approxi-

mations worsens with increasing dissipation strengtfthis

reflects the breakdown of the weak coupling approach when 02
strong friction is ruling the system dynamics.

Results for the Markovian treatment within RWA, given 0.0 L
in Sec. Il C 3, are depicted for the position varianeg(t) ’ 02 0.4 0.6 0.8 1.0
in Fig. 6. The driving parameters are the same as in Fig. 3. Y

For this example, the quality of agreement to the exact result

is similar for both Markov approximations. Nevertheless, the F|G. 5. The time averaged varianeg,(t) for the simple(dot-
solution without RWA yields—up to a scale—a better over-ted) and the improveddashedl Markov approximation, compared
all agreement with the exact behavior over a full drivingto the exact result(full line) for the parameterse=702,
periodT. w5=6.502, andkgT=0.510.
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12 — 7T 71— density operator over a single period. Since all variants of the
Markov approximation discussed herein truncate the
memory of the central system on time scales shorter than the
period of the driving, the corresponding master equations
have Floquet structure throughout. The exact path-integral
solution, in contrast, allows for memory effects of unlimited
duration and thereby generally prevents the consistent defi-
nition of a propagator over a single period.

Additional insight is gained by discussing the dynamics in
terms of phase-space distributions, specifically, in terms of
the Wigner representation of the density operator and its
equation of motion. In this representation, the Floquet for-
, , , . , malism is a useful device to construct and classify solutions.

750 51 52 53 54 55 Since all Fokker-Planck equations obtained are time peri-
t odic, as are the corresponding master equations, their solu-
tions may be written as eigenstates dfvégner-Flogquet op-

FIG. 6. Position variances obtained with the Markov approxi-€rator (the Fokker-Planck operator evolving the Wigner
mation with respect to the quasienergy spectrum \dttted and ~ function, integrated over a single perjpdr Wigner-Floquet
without (dashell RWA, compared to the exact resgttll line) for ~ Statesin short. They represent the quasiprobability distribu-
(@ y=0/20 and(b) y=Q/10 (b) for ksT=0.5:Q. The driving  tions closest to the Floquet solutions of the corresponding
parameters are=7Q2 and w3=6.502. classical Fokker-Planck equation.

Wigner-Floquet states with a purely real quasienergy cor-

unperturbed spectrum. In the time domain, the quantities er{gspond to asymptotic solutions. They are not literally sta-

tering the dissipative terms of the master equation, such aonary but retain the periodic time dependence of the driv-

Heisenberg-picture operators of the central system, gain af9: Since we are dealing here with a linear system, the

explicit time dependence with the periodicity of the driving. asymptotic qua_5|pro_ba_blllty distributions follow the corre-
As a bonus, the Floquet treatment of the central system wit ponding classical limit cycles. In the case of parametric

driving yields a well-adapted basis, the set of eigenstates riving, these limit cycles are trivial and correspond to a

the Floquet operator. Representing the master equation irlf(ed point at thg origin. A time dependence anses.onlly b.y
this basis completely removes the unitary term. the periodic variation of the shape of the asymptotic distri-

Besides the differences in representation, the use of thgu'[é:ons.l dina f ical . ¢ certain d
improved Floguet-Markov approximation in Sec. Il C 4. re- oncluding from a numerical comparnson of certain dy-
sults mainly in a modified momentum diffusion that depend amical quantities, for.the specific case of the Mathieu oscil-
on the quasienergy spectrum instead of the unperturbed sp glor, the attributes “simple” and “improved” for the two

trum of the central system. The difference becomes signifi- asic Markovian approaches prove adequate. Results for the
cant in the limits of strong driving amplitude and low tem-

Markov approximation based on the quasienergy spectrum
perature. Anadditive time-dependent external force, applied

show consistently better agreement with the exact path-
5i'ntegral solution than those for the Markov approximation
With respect to the unperturbed spectrum. However, even in
parameter regimes where the respective approximations are
Even within the improved Markov approach, finer levels expected to become problematic, the differences in qyality
of approximation can be distinguished. A significant simpli—are not huge and the agreement with the exact solution is
fication of the master equation is achieved by a rotaﬁnggengrally gqod. Technical a(_jvantages of Fhe Markov ap-
wave approximation, i.e., here by neglecting reservoir-Proximation in genera_l and of its various r_am|f|cat|ons—easy
induced virtual transitions betweeRloquet states of the analytical and numerical tractability, desirable formal prop-

central system that violatguasienergyonservation. The re- ertles_ such as.FIqquet or I'_|ndblaq form pf 'the 'master

sulting master equation has Lindblad form, with creation anduation—can justify accepting their quantitative inaccu-

annihilation operators acting on Floquet states, and thutACY-

manifestly generates a dynamical semigroup. This is not the

case if the RWA is avoided. Apparently a drawback, the lack ACKNOWLEDGMENTS

of a Lindblad structure in the master equation without RWA,  Financal support of this work by the Deutsche Fors-

faithfully reflects the failure of the Markov approximation on chungsgemeinschafGrant No. Di 511/2-1 and Ha 1517/

short time scales. _ , 14-1) is gratefully acknowledged. We thank Christine Zerbe
An analogous situation as with the Lindblad form of the tor providing us the numerical code for the path integral

master equation arises with its Floquet structure. If all coef<q,tion and Gert-Ludwig Ingold for helpful discussions.
ficients are at most periodically time dependent, then the

equation of motion for the reduced density operator complies APPENDIX A:

with the conditions for appl|qab|llty of the Floquet theorem. SOLUTION OF THE CHARACTERISTIC EQUATIONS

As a consequence, the solutions can be cast in Floguet form,

i.e., can be written as eigenfunctions of a generalized non- In this appendix, we solve the equation of motion for the
unitary Floquet operator that generates the evolution of th&Vigner function by the method of characteristics. For sim-

a renormalization which vanishes, however, in the case of a
Ohmic bath.
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plicity, we use here units witm=1. We writeW(x,p,t) as

W(x,p,t)=f dXdP X+iPPeSX.P.Y), (A1)

By this ansatz, Eq(33) is transformed to the quasilinear

partial differential equation
F(X,S«,P,Sp,t,5)=0 (A2)
for S(X,P,t), whereF is given by

F=S~ XS+ yPSp+K(t)PSc+ yD ppP?+ yDy X P.
(A3)

We denote the partial derivatives $fX, P,t) with respect to
X, P, andt by Sy, Sp, andS;, respectively.
The characteristic equatiof®6] of Eq. (A2) are given by

L_OF_. Ad
t_g_ ] ( )
k=27 ke AS
- 35." (t)P, (A5)
6T _ o A6
=5 = PX (A6)
. oF
. oF
Sp=— 75 =~ ¥Sek(1)Sx=2yDppP — yDypX,
(A8)
B &f_ dk(t)P A9
S R T (A9

whose solutions give the characteristics of the partial differ-

ential equation(A2).
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which is the classical equation of motion with an inhomoge-
neity. The effective diffusion constait is given by

D=Dpp+ ¥Dyp. (A14)
With the integration constants_, we integrate Eq(A13)
with the Green functionf9) to

t
Sx(t)=c1_f1(t)+cz_f2(t)—2yDft dt’ G(t,t")P(t'),
0

(A15)

and get by use of EqA7)

. . t o IG(t,t")
Sp(t)zcl_fl(t)+C2_f2(t)_2’ny dt,TP(t,)
to
+ yDypP(1). (A16)
By inserting
aG(t,t")

P(t")=G(t,t")X(t)+ P(t), (A17)

ot

obtained from Eqs(A1l) and(A12), we get a result foy

and Sy that depends only on the endpoints of the character-
istics. Now together with Eq(A2), we have an expression
for grad S(X,P,t)=(Sx,Sp,S;), which can be integrated to

S(X,P,t)=[cy_fy(t)+co_fo(t)]X

) . 1
+[ci-fi()+cy fa(t)]P— Effxx(tato)xz

1
— oyp(t,tg) XP— Eapp(t,to)PZ, (A18)
with
t
axx(t,to)zzyof dt'[G(t,t")]?, (A19)
to

Equation(A4) means that the characteristics can be pa-

rametrized by the timé Instead of Eq(A9), we will use Eq.

(A2) to get an expression fd,. So we only have to solve

t d
pr(t,t0)=2'ny dt'G(t,t’)EG(t,t’), (A20)
to

Egs. (A5)—(A8). The solutions of these equations can be

traced back to the fundamental solutidng) of the classical

equation of motion2).
From Egs.(A5) and (A6), we find

P—yP+k(t)P=0. (A10)

This is simply the classical equation of motion with a nega-

tive damping constant. Therefore the solutions Xoand P
read

P(t)=—cy, e (t) +co.e”'f(1), (A11)
X(t)=cy.e"Fa(t) —cpr?fa(t), (A12)
wherec;, denotes integration constants.
From Egs.(A7) and (A8) we find for Sy
Sx+ ¥Sx+k(t)Sx=—2yDP, (A13)

t J 2
Tpp(titg)=—yDyp+2yD ftodt’[EG(t,t’)} .
(A21)

By insertingS(X,P,t) into Eq. (Al), we find a solution for
the Wigner functionW(x,p,t).

The integration constants;.. are of course constant
along the characteristics. Therefore the Poisson brackets
between the expressions c;.(X,S¢,P,Sp,t) and
F(X,Sx,P,Sp,t,S;) vanish[26]. By transforming back from
Fourier space to real space, one finds that the operators
Ci+=Ci+(—idyx,—ix,—idy,—ip,t) commute with the op-
eratord,— L (t), whose nullspace is the solution of the equa-
tion of motion. Therefore, the;.. are shift operators in the
subspace of solutions, i.e., W(x,p,t) is a solution of Eq.
(33), thenc;.W(x,p,t) is also a solution.

For thec;. we find
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R 1 ) Thus we obtain ac-number correction to the interaction-
€1+ =5 [ 2D+ Fa(D)dp], (A22)  picture position operatd82), given by the third term. After
inserting Eq.(B3) into Eq.(22), the generalized Markov ap-

- 1 . proximation emerges as
Cor =5 [Fa(t)dxt F2(D)p], (A23)
. i R
C1- =T 2(D)[ X+ yx(t,tg) dx+ oxplt,to) dp] ps=- -+ 7 F(U[Xps] (B4)
_|f2(t)[p+ O'Xp(t,to)(?x‘l‘ (Tpp(t,to)(gp], (A24)
. i o . 2
Co = —if (D[ X+ oyx(t,t0) dxF oyt o) 9] - ﬁZI/ gifo dr A T)[X,Ps]a
Fif (D[ P+ oyt to) Ayt opp(Lito) 3] (A25) .
Note that because of the linear structure of the character- X ft dt’G(t—r,t)F(t"). (BS)

istic equations, there is no ambiguity concerning the ordering
of operators. _
The operator), . (t), used above, are proportional to the The dots denote the old result fé1(t)=0, given by the

Cis . right-hand side of Eq(27). The term in the first line stems
from the reversible part of the master equati@g); the sec-
APPENDIX B: ond one is a correction of the driving force due to the inter-
THE ADDITIVELY DRIVEN HARMONIC OSCILLATOR action with the bath. Thus the equation of motion for the

In this appendix we present the Markovian master equadensity operator has the structure
tion within the quasispectrum approach when the parametric
oscillator is subjected to additional additive driving , i~
—XF(t), i.e., ps=- -+ F(U[Xps] (B6)

H(t)=Hg(t) —XF(t). (B1)
A . . . ) ) with an effective total driving force
With Hg(t) being a time-independent harmonic oscillator,
ie., k(t)zmwé, the corresponding Markovian master equa-
tion in RWA for the dissipative system has already been Ft)=F(0)+ ifxdw |(w)deT Sineo T
given in[5]. Herein we generalize these results for the com- m Jo 0
bined time-dependent system Hamiltonian in Es{L).

It is known that the only effect of the driving forde(t) =7 0 , ,
on the(quas)energy spectrum of a parametrically driven har- th dv'G™(t—7.t)F(t"). (B7)
monic oscillator is an overall level shif8]. Thus the level
separations remain unaffected and we expect no change in S
the dissipative part of the master equati@). Note that the dissipative parts of H&6) are not affected
The classical equation of motion, which is also obeyed byPY the additive driving forcé (t). This makes it explicit that
the interaction-picture position operator, now reads we must use a parametric time dependence to study differ-
. ences in the dissipative parts resulting from the Markov ap-
mx+k(t)x=F(t), (B2) proximation with respect to the energy spectrum versus the
and can be integrated to yield the interaction-picture positiofMarkov approximation with respect to the quasienergy spec-
operator trum. _ . .
o R With an Ohmic bath,| (@) =myw, the integral in Eq.
X(t,t")= —5(—(96 tt) I EGO(t t) (B7) vanishes and we obtal(t) =F(t). Thus in contrast to
' ot’ m ' an explicit parametric time dependeridg) in the quadratic

1t part of the Hamiltonian, the time dependence of an additive
+ _J' dt” GO(t,t")F(t"). (B3) force,_ in this case, _doe_s not change the Markovian master
mJjy equation of the dissipative system.
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